Feature transformation for AI is an essential task to boost the effectiveness and interpretability of machine learning (ML). Feature transformation aims to transform original data to identify an optimal feature space that enhances the performances of a downstream ML model. Existing studies either combines preprocessing, feature selection, and generation skills to empirically transform data, or automate feature transformation by machine intelligence, such as reinforcement learning. However, existing studies suffer from: 1) high-dimensional non-discriminative feature space; 2) inability to represent complex situational states; 3) inefficiency in integrating local and global feature information. To fill the research gap, we formulate the feature transformation task as an iterative, nested process of feature generation and selection, where feature generation is to generate and add new features based on original features, and feature selection is to remove redundant features to control the size of feature space. Finally, we present extensive experiments and case studies to illustrate 24.7\% improvements in F1 scores compared with SOTAs and robustness in high-dimensional data.
translated by 谷歌翻译
资金机构在很大程度上依赖于领域专家与研究建议之间的主题匹配来分配提案审查员。随着建议越来越跨学科,概述提案的跨学科性质是一项挑战,此后,找到具有适当专业知识的专家审阅者。解决这一挑战的重要步骤是准确对建议的跨学科标签进行分类。现有的方法论和申请相关文献,例如文本分类和提案分类,不足以共同解决跨学科建议数据引入的三个关键独特问题:1)提案的纪律标签的层次结构,谷物,例如,从信息科学到AI,再到AI的基础。 2)在提案中起着不同作用的各种主要文本部分的异质语义; 3)提案的数量在非学科和跨学科研究之间存在不平衡。我们可以同时解决该提案的跨学科性质时的三个问题吗?为了回答这个问题,我们提出了一个层次混音多标签分类框架,我们称之为H-Mixup。 H-Mixup利用基于变压器的语义信息提取器和基于GCN的跨学科知识提取器来解决第一期和第二个问题。 H-Mixup开发了Wold级混音,Word级cutmix,歧管混音和文档级混音的融合训练方法,以解决第三期。
translated by 谷歌翻译
功能转换旨在通过数学转换现有功能来提取良好的表示(功能)空间。应对维度的诅咒,增强模型概括,克服数据稀疏性并扩大经典模型的可用性至关重要。当前的研究重点是基于领域的知识特征工程或学习潜在表示;然而,这些方法并非完全自动化,不能产生可追溯和最佳的表示空间。在重建机器学习任务的功能空间时,可以同时解决这些限制吗?在这项扩展研究中,我们提出了一个用于特征转化的自优化框架。为了取得更好的性能,我们通过(1)获得高级状态表示来改善初步工作,以使加强代理能够更好地理解当前功能集; (2)解决Q值高估的Q值高估,以学习无偏见和有效的政策。最后,为了使实验比初步工作更具说服力,我们结论是通过五个数据集添加异常检测任务,评估各种状态表示方法,并比较不同的培训策略。广泛的实验和案例研究表明,我们的工作更有效和更高。
translated by 谷歌翻译
人白细胞抗原(HLA)是人类免疫领域的重要分子家族,它通过向T细胞呈现肽来识别外国威胁并触发免疫反应。近年来,诱导特定免疫反应的肿瘤疫苗的合成已成为癌症治疗的最前沿。对肽和HLA之间的结合模式进行计算建模可以极大地加速肿瘤疫苗的发展。但是,大多数预测方法的性能非常有限,他们无法完全利用对现有生物学知识作为建模的基础的分析。在本文中,我们提出了HLA分子肽结合预测的TripHlapan,这是一种新型的PAN特异性预测模型。 Triphlapan通过整合三重编码矩阵,BIGRU +注意模型和转移学习策略来表现强大的预测能力。全面的评估证明了Triphlapan在不同测试环境中预测HLA-I和HLA-II肽结合的有效性。最新数据集进一步证明了HLA-I的预测能力。此外,我们表明Triphlapan在黑色素瘤患者的样本中具有强大的结合重构能力。总之,Triphlapan是预测HLA-I和HLA-II分子肽与肿瘤疫苗合成的强大工具。
translated by 谷歌翻译
游戏理论到目前为止在各个领域都发现了许多应用,包括经济学,工业,法学和人工智能,每个玩家都只关心自己对非合作或合作方式的兴趣,但对其他玩家没有明显的恶意。但是,在许多实际应用中,例如扑克,国际象棋,逃避者追求,毒品拦截,海岸警卫队,网络安全和国防,球员通常都具有对抗性立场,也就是说,每个球员的自私行动不可避免地或故意造成损失或对其他球员造成严重破坏。沿着这条线,本文对在对抗性游戏中广泛使用的三种主要游戏模型(即零和零正常形式和广泛形式游戏,stackelberg(Security)游戏,零和差异游戏)提供了系统的调查。观点,包括游戏模型的基本知识,(近似)平衡概念,问题分类,研究前沿,(近似)最佳策略寻求技术,普遍的算法和实际应用。最后,还讨论了有关对抗性游戏的有希望的未来研究方向。
translated by 谷歌翻译
图表卷积网络(GCNS)已成为基于骨架的动作识别的主要方法。然而,它们仍然遭受两个问题,即邻域约束和纠缠的时空特征表示。大多数研究侧重于改善图形拓扑的设计,以解决第一个问题,但他们尚未充分探索后者。在这项工作中,我们设计了一个解开的时空变压器(DSTT)块,以克服GCN的上述限制三个步骤:(i)脱离时尚分解的分离;(ii)用于捕获全球背景下的相关性的全球时空注意; (iii)利用更多本地信息的本地信息增强。在其上,我们提出了一种名为分层图卷积件骨架变压器(HGCT)的新型架构,用于采用GCN(即,本地拓扑,时间动态和层级)和变压器的互补优势(即,全球背景和动态注意)。 HGCT轻量级和计算效率。定量分析证明了HGCT的优越性和良好的解释性。
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译
While inferring common actor states (such as position or velocity) is an important and well-explored task of the perception system aboard a self-driving vehicle (SDV), it may not always provide sufficient information to the SDV. This is especially true in the case of active emergency vehicles (EVs), where light-based signals also need to be captured to provide a full context. We consider this problem and propose a sequential methodology for the detection of active EVs, using an off-the-shelf CNN model operating at a frame level and a downstream smoother that accounts for the temporal aspect of flashing EV lights. We also explore model improvements through data augmentation and training with additional hard samples.
translated by 谷歌翻译